Connection between diabetes ,viral and bacterial infections
Abstract
Background: Diabetes mellitus is a clinical syndrome characterised by hyperglycemia. It is result of defects in insulin secretion, insulin action or both. In 2019 global prevalence of diabetes was 9.3 % . There is a lot of research , which shows key roles of infections including bacteria, viruses, fungi and parasites in the development of diabetes. This article aims to critically review current knowledge of how diabetes and infectious disease are connected to each other .
Methods: The Pubmed, Springer and sciencedirect databases were searched for articles published between 2000 and 2020 years . Articles published in languages other than English, articles without abstract, and those articles whose titles were not relevant to the purpose of this review were excluded .
Conclusion: More research is needed for clarification of the immunopathogenic mechanisms linking infections and diabetes .
Keywords: “Diabetes,” “infections,” “hyperglycemia”, “ induce ” , “accelerate” , “prevent”
Keywords
References
Toniolo A, Cassani G, Puggioni A, Rossi A, Colombo A, Onodera T, et al. The diabetes pandemic and associated infections: suggestions for clinical microbiology. Reviews in Medical Microbiology. 2019;30(1):1-17.
Casqueiro J, Casqueiro J, Alves C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian Journal of Endocrinology and Metabolism. 2012;16(Suppl1):S27-36.
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes research and clinical practice. 2019;157:107843.
Hiemstra HS, Schloot NC, Peter AvV, Sabine JMW, Kees LMCF, Jon JvR, et al. Cytomegalovirus in Autoimmunity: T Cell Crossreactivity to Viral Antigen and Autoantigen Glutamic Acid Decarboxylase. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(7):3988-91.
Choi KS, Jun HS, Kim HN, Park HJ, Eom YW, Noh HL, et al. Role of Hck in the Pathogenesis of Encephalomyocarditis Virus-Induced Diabetes in Mice. Journal of Virology. 2001;75(4):1949-57.
van der Werf N, Hillebrands J-L, Klatter FA, Bos I, Bruggeman CA, Rozing J. Cytomegalovirus infection modulates cellular immunity in an experimental model for autoimmune diabetes. Clinical & developmental immunology. 2003;10(2-4):153-60.
Hillebrands J-L, van der Werf N, Klatter FA, Bruggeman CA, Rozing J. Role of peritoneal macrophages in cytomegalovirus-induced acceleration of autoimmune diabetes in BB-rats. Clinical & developmental immunology. 2003;10(2-4):133-9.
Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Impaired IRS‐1/PI3‐kinase signaling in patients with HCV: A mechanism for increased prevalence of type 2 diabetes. Hepatology. 2003;38(6):1384-92.
Zipris D, Lien E, Nair A, Xie JX, Greiner DL, Mordes JP, et al. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. JOURNAL OF IMMUNOLOGY. 2007;178(2):693-701.
Zipris D. Innate immunity in type 1 diabetes. Diabetes/Metabolism Research and Reviews. 2011;27(8):824-9.
Nasif WA, Mukhtar MH, Nour Eldein MM, Ashgar SS. Oxidative DNA damage and oxidized low density lipoprotein in Type II diabetes mellitus among patients with Helicobacter pylori infection. Diabetology & metabolic syndrome. 2016;8(1):34.
Sarmiento L, Medina A, Aziz K, Anagandula M, Cabrera-Rode E, Fex M, et al. Differential effects of three echovirus strains on cell lysis and insulin secretion in beta cell derived lines: Echoviral Infection on Beta Cell Derived Lines. Journal of Medical Virology. 2016;88(6):971-8.
Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE, von Herrath MG. TLR2 signaling improves immunoregulation to prevent type 1 diabetes. EUROPEAN JOURNAL OF IMMUNOLOGY. 2011;41(5):1399-409.
Hoel H, Hove-Skovsgaard M, Hov JR, Gaardbo JC, Holm K, Kummen M, et al. Impact of HIV and Type 2 diabetes on Gut Microbiota Diversity, Tryptophan Catabolism and Endothelial Dysfunction. Scientific Reports. 2018;8.
Moon JY, Zolnik CP, Wang Z, Qiu Y, Usyk M, Wang T, et al. Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine. 2018;37:392-400.
Hivert M, Sun Q, Shrader P, Mantzoros C, Meigs J, Hu F. Circulating IL-18 and the risk of type 2 diabetes in women. Diabetologia. 2009;52(10):2101-8.
Ouyang J, Isnard S, Lin J, Fombuena B, Marette A, Routy B, et al. Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Research and Therapy. 2020;17.
Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60(6):943-51.
Husain NE, Noor SK, Elmadhoun WM, Almobarak AO, Awadalla H, Woodward CL, et al. Diabetes, metabolic syndrome and dyslipidemia in people living with HIV in Africa: re-emerging challenges not to be forgotten. HIV/AIDS (Auckland, NZ). 2017;9:193-202.
Fleischman A, Johnsen S, Systrom DM, Hrovat M, Farrar CT, Frontera W, et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. American journal of physiology Endocrinology and metabolism. 2007;292(6):E1666-73.
Mendy A, Gasana J, Vieira ER, Diallo H. Prospective study of cytomegalovirus seropositivity and risk of mortality from diabetes. Acta Diabetologica. 2014;51(5):723-9.
Serfaty L, Capeau J. Hepatitis C, insulin resistance and diabetes: clinical and pathogenic data. LIVER INTERNATIONAL. 2009;29:13-25.
Mukhtar NA, Bacchetti P, Ayala CE, Melgar J, Christensen S, Maher JJ, et al. Insulin Sensitivity and Variability in Hepatitis C Virus Infection Using Direct Measurement. Digestive Diseases and Sciences. 2013;58(4):1141-8.
Hirasawa K, Jun HS, Maeda K, Kawaguchi Y, Itagaki S, Mikami T, et al. Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. Journal of Virology. 1997;71(5):4024-31.
Lee Y-S, Li N, Shin S, Jun H-S. Role of Nitric Oxide in the Pathogenesis of Encephalomyocarditis Virus-Induced Diabetes in Mice. Journal of Virology. 2009;83(16):8004-11.
Jeon CY, Haan MN, Cheng C, Clayton ER, Mayeda ER, Miller JW, et al. Helicobacter pylori Infection Is Associated With an Increased Rate of Diabetes. DIABETES CARE. 2012;35(3):520-5.
Cabrera-Rode E, Sarmiento L, Tiberti C, Molina G, Barrios J, Hernández D, et al. Type 1 diabetes islet associated antibodies in subjects infected by echovirus 16. Diabetologia. 2003;46(10):1348-53.
Sarmiento L, Frisk G, Anagandula M, Cabrera-Rode E, Roivainen M, Cilio CM. Expression of Innate Immunity Genes and Damage of Primary Human Pancreatic Islets by Epidemic Strains of Echovirus: Implication for Post-Virus Islet Autoimmunity. PLoS One. 2013;8(11).
Wolter TR, Wong R, Sarkar SA, Zipris D. DNA microarray analysis for the identification of innate immune pathways implicated in virus-induced autoimmune diabetes. Clinical Immunology. 2009;132(1):103-15.
Cho Naing Joon Wah Mak Syed Imran Ahmed Mala M. Relationship between hepatitis C virus infection and type 2 diabetes mellitus:Meta-analysis. 世界胃肠病学杂志:英文版. 2012;18(14):1642-51.
Hsieh MC, Wang SSW, Hsieh YT, Kuo FC, Soon MS, Wu DC. Helicobacter pylori infection associated with high HbA1c and type 2 diabetes. European Journal of Clinical Investigation. 2013;43(9):949-56.
Stene LC, Oikarinen S, Hyöty H, Barriga KJ, Norris JM, Klingensmith G, et al. Enterovirus Infection and Progression From Islet Autoimmunity to Type 1 Diabetes: The Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes. 2010;59(12):3174-80.
Graham KL, Sanders N, Tan Y, Allison J, Thomas WHK, Coulson BS. Rotavirus Infection Accelerates Type 1 Diabetes in Mice with Established Insulitis. Journal of Virology. 2008;82(13):6139-49.
Dotta F, Censini S, Astrid GSvH, Marselli L, Masini M, Dionisi S, et al. Coxsackie B4 Virus Infection of β Cells and Natural Killer Cell Insulitis in Recent-Onset Type 1 Diabetic Patients. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(12):5115-20.
Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia. 2009;52(6):1143-51.
Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R, et al. Enterovirus RNA in Blood Is Linked to the Development of Type 1 Diabetes. Diabetes. 2011;60(1):276-9.
Oikarinen M, Tauriainen S, Oikarinen S, Honkanen T, Collin P, Rantala I, et al. Type 1 Diabetes Is Associated With Enterovirus Infection in Gut Mucosa. Diabetes. 2012;61(3):687-91.
Skarsvik S, Puranen J, Honkanen J, Roivanen M, et al. Decreased In Vitro Type 1 Immune Response Against Coxsackie Virus B4 in Children With Type 1 Diabetes. Diabetes. 2006;55(4):996-1003.
Varela-Calvino R, Ellis R, Sgarbi G, Dayan CM, Peakman M. Characterization of the T-cell response to Coxsackievirus B4: Evidence that effector memory cells predominate in patients with type 1 diabetes. Diabetes. 2002;51(6):1745-53.
Petzold A, Solimena M, Knoch K-p. Mechanisms of Beta Cell Dysfunction Associated With Viral Infection. Current Diabetes Reports. 2015;15(10):1-10.
Kobayashi T, Nishida Y, Tanaka S, Aida K. Pathological changes in the pancreas of fulminant type 1 diabetes and slowly progressive insulin‐dependent diabetes mellitus (SPIDDM): innate immunity in fulminant type 1 diabetes and SPIDDM. Diabetes/Metabolism Research and Reviews. 2011;27(8):965-70.
McCartney SA, Vermi W, Lonardi S, Rossini C, Otero K, Calderon B, et al. RNA sensor-induced type I IFN prevents diabetes caused by a [Beta] cell-tropic virus in mice. Journal of Clinical Investigation. 2011;121(4):1497-507.
Ramondetti F, Sacco S, Comelli M, Bruno G, Falorni A, Iannilli A, et al. Type 1 diabetes and measles, mumps and rubella childhood infections within the Italian Insulin-dependent Diabetes Registry: Type 1 diabetes and measles, mumps and rubella infections in Italy. Diabetic Medicine. 2012;29(6):761-6.
Honeyman MC, Stone NL, Falk BA, Nepom G, Harrison LC. Evidence for Molecular Mimicry between Human T Cell Epitopes in Rotavirus and Pancreatic Islet Autoantigens. The Journal of Immunology. 2010;184(4):2204-10.
Pane JA, Webster NL, Zufferey C, Coulson BS. Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells. VIRUS RESEARCH. 2014;179:73-84.
Pane JA, Fleming FE, Graham KL, Thomas HE, Kay TWH, Coulson BS. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. SCIENTIFIC REPORTS. 2016;6:29697.
Richer MJ, Straka N, Fang D, Shanina I, Horwitz MS. Regulatory T-Cells Protect From Type 1 Diabetes After Induction by Coxsackievirus Infection in the Context of Transforming Growth Factor-[beta]. Diabetes. 2008;57(5):1302-11.
Filippi CM, Estes EA, Oldham JE, von Herrath MG. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. Journal of Clinical Investigation. 2009;119(6):1515-23.
Webster NL, Zufferey C, Pane JA, Coulson BS. Alteration of the Thymic T Cell Repertoire by Rotavirus Infection Is Associated with Delayed Type 1 Diabetes Development in Non-Obese Diabetic Mice. PLoS One. 2013;8(3).
Montoya-Rosales A, Castro-Garcia P, Torres-Juarez F, Enciso-Moreno JA, Rivas-Santiago B. Glucose levels affect LL-37 expression in monocyte-derived macrophages altering the Mycobacterium tuberculosis intracellular growth control. MICROBIAL PATHOGENESIS. 2016;97:148-53.
Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. The Lancet Infectious Diseases. 2009;9(12):737-46.
Stalenhoef JE, Alisjahbana B, Nelwan EJ, Ven-Jongekrijg Jvd, Ottenhoff THM, Meer JWMvd, et al. The role of interferon-gamma in the increased tuberculosis risk in type 2 diabetes mellitus. European Journal of Clinical Microbiology & Infectious Diseases. 2008;27(2):97-103.
Lachmandas E, van den Heuvel CNAM, Damen MSMA, Cleophas MCP, Netea MG, van Crevel R. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. Journal of Diabetes Research. 2016;2016:1-15.
Tan KS, Lee KO, Low KC, Gamage AM, Liu YC, Tan GYG, et al. Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria. JOURNAL OF CLINICAL INVESTIGATION. 2012;122(6):2289-300.
Cheekatla SS, Tripathi D, Venkatasubramanian S, Nathella PK, Paidipally P, Ishibashi M, et al. NK-CD11c+Cell Crosstalk in Diabetes Enhances IL-6-Mediated Inflammation during Mycobacterium tuberculosis Infection. PLOS PATHOGENS. 2016;12(10):e1005972.
El-Eshmawy MM, El-Hawary AK, Gawad SSA, El-Baiomy AA. Helicobacter pylori infection might be responsible for the interconnection between type 1 diabetes and autoimmune thyroiditis. DIABETOLOGY & METABOLIC SYNDROME. 2011;3(1):28-.
Sun Y, Pei W, Wu Y, Yang Y. An Association of Herpes Simplex Virus Type 1 Infection With Type 2 Diabetes. Diabetes Care. 2005;28(2):435-6.
Barral AM, Thomas HE, Ling EM, Darwiche R, Rodrigo E, Christen U, et al. SOCS-1 protects from virally-induced CD8 T cell mediated type 1 diabetes. Journal of Autoimmunity. 2006;27(3):166-73.
Raine T, Zaccone P, Mastroeni P, Cooke A. Salmonella typhimurium Infection in Nonobese Diabetic Mice Generates Immunomodulatory Dendritic Cells Able to Prevent Type 1 Diabetes. The Journal of Immunology. 2006;177(4):2224-33.
Chen SJ, de Craen AJM, Raz Y, Derhovanessian E, Vossen A, Westendorp RGJ, et al. Cytomegalovirus seropositivity is associated with glucose regulation in the oldest old. Results from the Leiden 85-plus Study. IMMUNITY & AGEING. 2012;9(1):18-.
Refbacks
- There are currently no refbacks.
ISSN: 2346-8491 (online)