Oxygen in cardiac surgery: does more mean better?

Ioseb Begashvili, Merab Kiladze, George Grigolia


Supplemental oxygen has been using in clinical practice for a long time, but there are still many questions regarding to its pitfalls and advantages. On the one hand, high fraction of inspired oxygen  speeds up gas resorption behind closed airways and promotes atelectasis formation and pulmonary shunt.  Hyperoxia may cause vasoconstriction, thereby compromising perfusion and hence, actual oxygen delivery. Hyperoxia may increase oxidative stress by boosting the production of reactive oxygen species, consequently aggravating ischemia-reperfusion injury. On the other hand, the vasoconstrictive stimulus of short-term exposure to hyperoxia before sustained ischemia may act as a preconditioner, with attenuation of ischemia-reperfusion injury. Hyperoxia induced vasoconstriction may counteract systemic inflammation induced vasoplegia and reduce vasopressor requirements. Hyperoxia may reduce gas microemboli by denitrogenation. Hyperoxia may reduce surgical site infection. During cardiac surgery, supplemental oxygen is conventionally employed with high concentration to secure oxygen reserves and prevent perioperative hypoxia. Consequently, arterial oxygen tension is kept mainly at supraphysiologic level, especially during operations and cardio-pulmonary bypass.

The aim of the present review is to update information about optimal oxygen concentration and oxemia level. Oxygen is a crucial element in perioperative management of cardiac surgery patients. it’s obligatory to determine whether the changes accompanied with supraphysiologic level of oxygen are benign or they translate into a worsening of clinical outcomes.

In conclusion, mild to moderate hyperoxia may be successfully used in cardiac surgery. The correct timing of applying supraphysiologic level of oxygen might be the key to reliably defeat patients from hypoxia and avoid hyperoxia induced undesirable consequences.


oxygen, cardiac surgery, anesthesia, hyperoxia

Full Text:



Wittwer ED, Radosevich MA. Oxygen Targets: Too Much or Too Little; Does It Matter? [Internet]. Vol. 37, Journal of Cardiothoracic and Vascular Anesthesia. W.B. Saunders; 2023 [cited 2023 Aug 29]. p. 687–9. Available from: http://www.jcvaonline.com/article/S1053077023000435/fulltext

Decalmer S, O’Driscoll BR. Oxygen: Friend or foe in peri-operative care? [Internet]. Vol. 68, Anaesthesia. Anaesthesia; 2013 [cited 2022 Jan 27]. p. 8–12. Available from: https://pubmed.ncbi.nlm.nih.gov/23130783/

De Jong A, Futier E, Millot A, Coisel Y, Jung B, Chanques G, et al. How to preoxygenate in operative room: Healthy subjects and situations “at risk.” Ann Fr Anesth Reanim [Internet]. 2014 Jul 1 [cited 2023 Oct 19];33(7–8):457–61. Available from: https://pubmed.ncbi.nlm.nih.gov/25168301/

Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: Bringing back the focus on patient outcome [Internet]. Vol. 119, British Journal of Anaesthesia. Br J Anaesth; 2017 [cited 2023 Sep 7]. p. 16–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28974078/

Habre W, Peták F. Perioperative use of oxygen: Variabilities across age. Br J Anaesth. 2014 Dec 1;113:ii26–36.

Pryor KO, Berger MM. The elusive promise of perioperative hyperoxia [Internet]. Vol. 115, British Journal of Anaesthesia. Br J Anaesth; 2015 [cited 2023 Sep 7]. p. 344–6. Available from: https://pubmed.ncbi.nlm.nih.gov/26209854/

Rothen HU. Oxygen: Avoid too much of a good thing! [Internet]. Vol. 27, European Journal of Anaesthesiology. Eur J Anaesthesiol; 2010 [cited 2023 Dec 2]. p. 493–4. Available from: https://pubmed.ncbi.nlm.nih.gov/20442580/

Hedenstierna G, Edmark L. Effects of anesthesia on the respiratory system. Vol. 29, Best Practice and Research: Clinical Anaesthesiology. Baillière Tindall; 2015. p. 273–84.

Ball L, Battaglini D, Pelosi P. Postoperative respiratory disorders [Internet]. Vol. 22, Current Opinion in Critical Care. Curr Opin Crit Care; 2016 [cited 2023 Oct 22]. p. 379–85. Available from: https://pubmed.ncbi.nlm.nih.gov/27168252/

Pagano A, Barazzone-Argiroffo C. Alveolar Cell Death in Hyperoxia-Induced Lung Injury. In: Annals of the New York Academy of Sciences [Internet]. Ann N Y Acad Sci; 2003 [cited 2023 Oct 22]. p. 405–16. Available from: https://pubmed.ncbi.nlm.nih.gov/15033761/

Helmerhorst HJF, Schouten LRA, Wagenaar GTM, Juffermans NP, Roelofs JJTH, Schultz MJ, et al. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med Exp [Internet]. 2017 Dec [cited 2022 Jan 27];5(1). Available from: /pmc/articles/PMC5446430/

Kaneda T, Ku K, Inoue T, Onoe M, Oku H. Postischemic reperfusion injury can be attenuated by oxygen tension control. Jpn Circ J [Internet]. 2001 [cited 2023 Dec 2];65(3):213–8. Available from: https://pubmed.ncbi.nlm.nih.gov/11266197/

Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Vol. 158, American Heart Journal. Mosby; 2009. p. 371–7.

Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray J, et al. Air versus oxygen in myocardial infarction (AVOID) trial sub-study: time-dependent effect of oxygen administration on myocardial injury. Hear Lung Circ [Internet]. 2015 Jan 1 [cited 2023 Sep 24];24:S374. Available from: http://www.heartlungcirc.org/article/S1443950615010343/fulltext

Orbegozo Cortés D, Puflea F, Donadello K, Taccone FS, Gottin L, Creteur J, et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res [Internet]. 2015 Mar 1 [cited 2023 Dec 2];98:23–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25433297/

González-Alonso J, Richardson RS, Saltin B. Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J Physiol [Internet]. 2001 Jan 1 [cited 2023 Dec 2];530(Pt 2):331. Available from: /pmc/articles/PMC2278413/

Thomson AJ, Drummond GB, Waring WS, Webb DJ, Maxwell SRJ. Effects of short-term isocapnic hyperoxia and hypoxia on cardiovascular function. J Appl Physiol [Internet]. 2006 [cited 2023 Oct 26];101(3):809–16. Available from: https://journals.physiology.org/doi/10.1152/japplphysiol.01185.2005

Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab [Internet]. 2007 Jan 5 [cited 2023 Dec 2];27(1):69–75. Available from: https://pubmed.ncbi.nlm.nih.gov/16670698/

Gao Z, Spilk S, Momen A, Muller MD, Leuenberger UA, Sinoway LI. Vitamin C prevents hyperoxia-mediated coronary vasoconstriction and impairment of myocardial function in healthy subjects. Eur J Appl Physiol [Internet]. 2012 Feb [cited 2023 Dec 2];112(2):483–92. Available from: https://pubmed.ncbi.nlm.nih.gov/21584682/

Kraus AC, De Miguel C. Hyperoxia and Acute Kidney Injury: A Tale of Oxygen and the Kidney [Internet]. Vol. 42, Seminars in Nephrology. Semin Nephrol; 2022 [cited 2023 Dec 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/36404211/

Bae J, Kim J, Lee S, Ju JW, Cho YJ, Kim TK, et al. Association Between Intraoperative Hyperoxia and Acute Kidney Injury After Cardiac Surgery: A Retrospective Observational Study. J Cardiothorac Vasc Anesth [Internet]. 2021 Aug 1 [cited 2023 Dec 10];35(8):2405–14. Available from: http://www.jcvaonline.com/article/S1053077020312891/fulltext

Smit B, Smulders YM, van der Wouden JC, Oudemans-van Straaten HM, Spoelstra-de Man AME. Hemodynamic effects of acute hyperoxia: Systematic review and meta-analysis [Internet]. Vol. 22, Critical Care. Crit Care; 2018 [cited 2023 Apr 21]. Available from: https://pubmed.ncbi.nlm.nih.gov/29477145/

Kunst G, Klein AA. Peri-operative anaesthetic myocardial preconditioning and protection - Cellular mechanisms and clinical relevance in cardiac anaesthesia [Internet]. Vol. 70, Anaesthesia. Anaesthesia; 2015 [cited 2023 Dec 2]. p. 467–82. Available from: https://pubmed.ncbi.nlm.nih.gov/25764404/

Spoelstra-De Man AME, Smit B, Oudemans-Van Straaten HM, Smulders YM. Cardiovascular effects of hyperoxia during and after cardiac surgery. Vol. 70, Anaesthesia. Blackwell Publishing Ltd; 2015. p. 1307–19.

Young RW. Hyperoxia: A review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol. 2012 Dec;44(4):241–9.

WHO | Global guidelines on the prevention of surgical site infection. WHO [Internet]. 2018 [cited 2019 Sep 23]; Available from: http://www.who.int/gpsc/ssi-prevention-guidelines/en/#.WB6CWivkT70.mendeley

Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br J Anaesth [Internet]. 2017 Jul 1 [cited 2023 Sep 24];119(1):140–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28974067/

Lim CH, Han J young, Cha S ha, Kim YH, Yoo KY, Kim HJ. Effects of high versus low inspiratory oxygen fraction on postoperative clinical outcomes in patients undergoing surgery under general anesthesia: A systematic review and meta-analysis of randomized controlled trials. Vol. 75, Journal of Clinical Anesthesia. Elsevier; 2021. p. 110461.

Orhan-Sungur M, Kranke P, Sessler D, Apfel CC. Does supplemental oxygen reduce postoperative nausea and vomiting? A meta-analysis of randomized controlled trials. Anesth Analg [Internet]. 2008 Jun 1 [cited 2023 Sep 25];106(6):1733–8. Available from: http://www.anesthesia-analgesia.org/cgi/content/full/106/6/1733

Hovaguimian F, Lysakowski C, Elia N, Tramèr MR. Effect of intraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: Systematic review and meta-analysis of randomized controlled trials. Anesthesiology [Internet]. 2013 Aug [cited 2023 Apr 5];119(2):303–16. Available from: https://pubmed.ncbi.nlm.nih.gov/23719611/

Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Supplemental Perioperative Oxygen to Reduce the Incidence of Surgical-Wound Infection. N Engl J Med [Internet]. 2000 Jan 20 [cited 2022 Jan 25];342(3):161–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10639541/

Belda FJ, Aguilera L, García De La Asunción J, Alberti J, Vicente R, Ferrándiz L, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA [Internet]. 2005 Oct 26 [cited 2022 Jan 25];294(16):2035–42. Available from: https://pubmed.ncbi.nlm.nih.gov/16249417/

Turtiainen J, Saimanen EIT, Partio TJ, Mäkinen KT, Reinikainen MT, Virkkunen JJ, et al. Supplemental postoperative oxygen in the prevention of surgical wound infection after lower limb vascular surgery: a randomized controlled trial. World J Surg [Internet]. 2011 Jun [cited 2023 Dec 2];35(6):1387–95. Available from: https://pubmed.ncbi.nlm.nih.gov/21476113/

Maragakis LL, Cosgrove SE, Martinez EA, Tucker MG, Cohen DB, Perl TM. Intraoperative fraction of inspired oxygen is a modifiable risk factor for surgical site infection after spinal surgery. Anesthesiology [Internet]. 2009 [cited 2023 Dec 2];110(3):556–62. Available from: https://pubmed.ncbi.nlm.nih.gov/19225396/

Pryor KO, Fahey TJ, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA [Internet]. 2004 Jan 7 [cited 2023 Dec 2];291(1):79–87. Available from: https://pubmed.ncbi.nlm.nih.gov/14709579/

Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Høgdall C, Lundvall L, et al. Effect of High Perioperative Oxygen Fraction on Surgical Site Infection and Pulmonary Complications After Abdominal Surgery: The PROXI Randomized Clinical Trial. JAMA [Internet]. 2009 Oct 14 [cited 2023 Dec 2];302(14):1543–50. Available from: https://jamanetwork.com/journals/jama/fullarticle/184704

Kurz A, Fleischmann E, Sessler DI, Buggy DJ, Apfel C, Akcą O. Effects of supplemental oxygen and dexamethasone on surgical site infection: a factorial randomized trial‡. Br J Anaesth [Internet]. 2015 Sep 1 [cited 2023 Dec 2];115(3):434–43. Available from: https://pubmed.ncbi.nlm.nih.gov/25900659/

Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Vol. 16, The Lancet Infectious Diseases. Lancet Publishing Group; 2016. p. e288–303.

Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who Can Make Sense of the WHO Guidelines to Prevent Surgical Site Infection? Vol. 126, Anesthesiology. Lippincott Williams and Wilkins; 2017. p. 771–3.

Myles PS, Kurz A. Supplemental oxygen and surgical site infection: Getting to the truth [Internet]. Vol. 119, British Journal of Anaesthesia. Oxford Academic; 2017 [cited 2023 Sep 7]. p. 13–5. Available from: https://dx.doi.org/10.1093/bja/aex096

Mattishent K, Thavarajah M, Sinha A, Peel A, Egger M, Solomkin J, et al. Safety of 80% vs 30–35% fraction of inspired oxygen in patients undergoing surgery: a systematic review and meta-analysis [Internet]. Vol. 122, British Journal of Anaesthesia. Br J Anaesth; 2019 [cited 2023 Mar 15]. p. 311–24. Available from: https://pubmed.ncbi.nlm.nih.gov/30770049/

de Jonge S, Egger M, Latif A, Loke YK, Berenholtz S, Boermeester M, et al. Effectiveness of 80% vs 30–35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic review and meta-analysis [Internet]. Vol. 122, British Journal of Anaesthesia. Br J Anaesth; 2019 [cited 2023 Mar 15]. p. 325–34. Available from: https://pubmed.ncbi.nlm.nih.gov/30770050/

El Maleh Y, Fasquel C, Quesnel C, Garnier M. Updated meta-analysis on intraoperative inspired fraction of oxygen and the risk of surgical site infection in adults undergoing general and regional anesthesia. Sci Rep. 2023 Dec 1;13(1).

Sadurni M, Castelltort L, Rivera P, Gallart L, Pascual M, Duran X, et al. Perioperative hyperoxia and myocardial injury after surgery: a randomized controlled trial. Minerva Anestesiol. 2023 Jan 1;89(1–2):40–7.

Heinrichs J, Lodewyks C, Neilson C, Abou-Setta A, Grocott HP. The impact of hyperoxia on outcomes after cardiac surgery: a systematic review and narrative synthesis. Vol. 65, Canadian Journal of Anesthesia. Springer New York LLC; 2018. p. 923–35.

Wang CH, Chang WT, Huang CH, Tsai MS, Yu PH, Wang AY, et al. The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies [Internet]. Vol. 85, Resuscitation. Resuscitation; 2014 [cited 2023 Dec 4]. p. 1142–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24892265/

Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;

McGuinness SP, Parke RL, Drummond K, Willcox T, Bailey M. A multicenter, randomized, controlled Phase IIb trial of avoidance of hyperoxemia during cardiopulmonary bypass. Anesthesiology [Internet]. 2016 Sep 1 [cited 2023 Aug 31];125(3):465–73. Available from: https://pubmed.ncbi.nlm.nih.gov/27404222/

Smit B, Smulders YM, de Waard MC, Boer C, Vonk ABA, Veerhoek D, et al. Moderate hyperoxic versus near-physiological oxygen targets during and after coronary artery bypass surgery: A randomised controlled trial. Crit Care. 2016;

Heinrichs J, Grocott HP. Pro: Hyperoxia Should Be Used During Cardiac Surgery. Vol. 33, Journal of Cardiothoracic and Vascular Anesthesia. W.B. Saunders; 2019. p. 2070–4.

Wang D, Ding X, Su Y, Yang P, Du X, Sun M, et al. Incidence, Risk Factors, and Outcomes of Severe Hypoxemia After Cardiac Surgery. Front Cardiovasc Med. 2022 Jun 28;9:934533.

Anderson KJ, Harten JM, Booth MG, Berry C, McConnachie A, Rankin AC, et al. The cardiovascular effects of normobaric hyperoxia in patients with heart rate fixed by permanent pacemaker. Anaesthesia [Internet]. 2010 Feb [cited 2022 Jan 27];65(2):167–71. Available from: https://pubmed.ncbi.nlm.nih.gov/20003116/

Feliciano L, Henning RJ, Henning RJ, Haley JA. Coronary artery blood how: Physiologic and pathophysiologic regulation. Clin Cardiol [Internet]. 1999 Dec 1 [cited 2023 Oct 26];22(12):775–86. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/clc.4960221205

Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25(7):1393–9.

Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004 Oct 1;18(5):548–51.

Young RW. Hyperoxia: A review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol [Internet]. 2012 Dec [cited 2022 Jan 27];44(4):241–9. Available from: /pmc/articles/PMC4557568/

Alex J, Laden G, Cale ARJ, Bennett S, Flowers K, Madden L, et al. Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: A prospective randomized double-blind trial. J Thorac Cardiovasc Surg. 2005 Dec 1;130(6):1623–30.

Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM, et al. Cerebral Oxygen Desaturation Predicts Cognitive Decline and Longer Hospital Stay After Cardiac Surgery. Ann Thorac Surg. 2009 Jan 1;87(1):36–45.

Brinkman R, Amadeo RJJ, Funk DJ, Girling LG, Grocott HP, Mutch WAC. Cerebral oxygen desaturation during one-lung ventilation: Correlation with hemodynamic variables. Can J Anesth [Internet]. 2013 Jul 10 [cited 2023 Dec 9];60(7):660–6. Available from: https://link.springer.com/article/10.1007/s12630-013-9954-2

Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth Analg [Internet]. 2007 Jan [cited 2023 Apr 21];104(1):51–8. Available from: https://journals.lww.com/anesthesia-analgesia/Fulltext/2007/01000/Monitoring_Brain_Oxygen_Saturation_During_Coronary.11.aspx

Pasquina P, Merlani P, Granier JM, Ricou B. Continuous positive airway pressure versus noninvasive pressure support ventilation to treat atelectasis after cardiac surgery. Anesth Analg [Internet]. 2004 Oct [cited 2023 Dec 9];99(4):1001–8. Available from: https://pubmed.ncbi.nlm.nih.gov/15385340/

Weissman C. Pulmonary complications after cardiac surgery. In: Seminars in Cardiothoracic and Vascular Anesthesia [Internet]. Semin Cardiothorac Vasc Anesth; 2004 [cited 2023 Dec 9]. p. 185–211. Available from: https://pubmed.ncbi.nlm.nih.gov/15375480/

Zochios V, Collier T, Blaudszun G, Butchart A, Earwaker M, Jones N, et al. The effect of high-flow nasal oxygen on hospital length of stay in cardiac surgical patients at high risk for respiratory complications: a randomised controlled trial. Anaesthesia [Internet]. 2018 Dec 1 [cited 2023 Dec 9];73(12):1478–88. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/anae.14345

Giménez-Milà M, Vuylsteke A. Oxygen, Cardiac Surgery, and Delirium. Vol. 32, Journal of Cardiothoracic and Vascular Anesthesia. W.B. Saunders; 2018. p. 691.

Abou-Arab O, Huette P, Guilbart M, Dupont H, Guinot PG. Hyperoxia during cardiopulmonary bypass does not increase respiratory or neurological complications: a post hoc analysis of the CARDIOX study [Internet]. Vol. 125, British Journal of Anaesthesia. Elsevier Ltd; 2020 [cited 2023 Sep 28]. p. e400–1. Available from: http://www.bjanaesthesia.org/article/S0007091220304918/fulltext

Kempton H, Chong C, Vlok R, Melhuish T, Holyoak R, White L. Hyperoxemia reduces cerebrovascular accidents post coronary artery bypass graft surgery: a retrospective cohort study. J Emerg Crit Care Med [Internet]. 2020 Apr 10 [cited 2023 Dec 10];4(0). Available from: https://jeccm.amegroups.org/article/view/5603/html

Shaefi S, Shankar P, Mueller AL, O’Gara BP, Spear K, Khabbaz KR, et al. Intraoperative oxygen concentration and neurocognition after cardiac surgery a randomized clinical trial [Internet]. Vol. 134, Anesthesiology. Anesthesiology; 2021 [cited 2023 Dec 10]. p. 189–201. Available from: https://pubmed.ncbi.nlm.nih.gov/33331902/

Verma S, Fedak PWM, Weisel RD, Szmitko PE, Badiwala M V., Bonneau D, et al. Off-Pump Coronary Artery Bypass Surgery: Fundamentals for the Clinical Cardiologist [Internet]. Vol. 109, Circulation. Lippincott Williams & Wilkins; 2004 [cited 2023 Dec 9]. p. 1206–11. Available from: https://www.ahajournals.org/doi/abs/10.1161/01.CIR.0000120292.65143.F5

Shepherd SJ, Pearse RM. Role of central and mixed venous oxygen saturation measurement in perioperative care. Anesthesiology [Internet]. 2009 [cited 2023 Oct 31];111(3):649–56. Available from: https://pubmed.ncbi.nlm.nih.gov/19672190/

Ju JW, Choe HW, Bae J, Lee S, Cho YJ, Nam K, et al. Intraoperative mild hyperoxia may be associated with improved survival after off-pump coronary artery bypass grafting: a retrospective observational study. Perioper Med [Internet]. 2022 Dec [cited 2023 Apr 17];11(1):27. Available from: /pmc/articles/PMC9295444/

Nam K, Nam JS, Kim H Bin, Chung J, Hwang IE, Ju JW, et al. Effects of intraoperative inspired oxygen fraction (FiO2 0.3 vs 0.8) on patients undergoing off-pump coronary artery bypass grafting: the CARROT multicenter, cluster-randomized trial. Crit Care [Internet]. 2023 Dec 1 [cited 2023 Aug 30];27(1):286. Available from: https://ccforum.biomedcentral.com/articles/10.1186/s13054-023-04558-8

Song K, Wang S, Han J, Jiang L, Xu J, Akca O, et al. Intraoperative Fraction of Inspired Oxygen and Lung Injury in Coronary Artery Bypass Grafting: Study Protocol for a Randomised Controlled Trial. Turkish J Anaesthesiol Reanim [Internet]. 2023 Apr 1 [cited 2023 Dec 12];51(2):112–20. Available from: /pmc/articles/PMC10210611/

Lopez MG, Pretorius M, Shotwell MS, Deegan R, Eagle SS, Bennett JM, et al. The Risk of Oxygen during Cardiac Surgery (ROCS) trial: Study protocol for a randomized clinical trial. Trials [Internet]. 2017 Jun 26 [cited 2023 Dec 13];18(1):1–11. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-2021-5


  • There are currently no refbacks.


Become a REVIEWER 


ISSN: 2346-8491 (online)