Scanning Electron Microscopy and 3D Morphometry of Vascular Corrosion Casts: Techniques and Current Applications in Biomedical Research
Abstract
Background: Vascular corrosion casting is an old method that has found application by anatomists for a long time. Initially, the viscosity of casting media was very high and thus the technique failed to cast the entire circulatory system from the arterial injection site through small arteries, arterioles, capillaries, venules, small veins and caval veins. Casting media soon were improved and thus enabled casting of the entire circulatory system. Examination of these vascular casts under the light microscope does not allow a thorough analysis with high resolution. Only when in 1971 Murakami applied Scanning Electron Microscopy SEM. to study vascular corrosion casts a breakthrough was achieved and for the first time, microvascular networks, too, were able to be analysed with a spatial resolution high enough to study the surface of the casts also termed injection replicas. and a depth of focus high enough to examine a large field of view enabling to reliably trace individual vessels either over very short or over extremely long distances.
Scanning electron microscopy SEM. is a tool with great potential for morphological research. The images generated via SEM have great resolution and a high depth of focus, which gives SEM micrographs pseudo three-dimensionality. Adversely, the high depth of focus prevents accurate dimensional or spatial measurements of imaged microstructures from either the SEM video-display, printed micrographs or from photonegatives. Macroscopic objects are viewed close up using binocular vision. Binocular vision is also used in microscopy where stereophotogrammetry and related techniques applying stereo paired images, and a variety of hardware tools calculate the third dimension z-coordinate. using the parallax.
Morphometric SEM 3D analysis is currently used to analyse i. the geometry of microvascular trees in terms of vascular parameters i.e., diameters, interbranching distances, branching angles and intervascular distances. and ii. to determine bifurcation indices, asymmetry and area ratios given in arterial bifurcations respectively in venous mergings. Moreover, it allows to generate anaglyphic 3D images and to calculate optimality principles underlying the construction and maintenance of such delicate vascular networks i.e. principles of minimal lumen volume, minimal pumping power, minimal lumen surface and minimal endothelial shear force.
Aim: The main goal of the method is to characterize microvascular networks in human and animal tissues in order to demonstrate their anatomical situations and to reflect onto their physiological conditions. These methods enable not only to qualitatively describe but also to quantitatively explore the microvascularisation by means of three-dimensional morphometry and thus to compare different developmental stages and progress of disease.
Conclusions: The combination of the techniques described above allows a thorough study of microvascular networks in healthy- and pathologic tissues and organs. This enables i. to enhance the knowledge of vascular- / anatomical situations and development, ii. to compare the physiological conditions in health and different pathologies and iii. to gain insights and to develop therapeutical strategies in various clinical pictures, which are critically dependent on a proper functioning vascularization.
Keywords
Full Text:
PDFReferences
Lametschwandter A, Minnich B. Color Atlas of Adult Xenopus laevis: Microvasculature of Tissues and Organs. Springer Cham, Springer Nature Switzerland AG. 2022: Edition 1, XXII, 275, ISBN: 978-3-031-05109-8; DOI: 10.1007/978-3-031-05110-4.
Zamir M, Phipps S. Network analysis of an arterial tree. J. Biomech. 1998;21:25-34.
Zamir M. On fractal properties of arterial trees. J Theor Biol. 1999;197:517-526.
Gössl M, Rosol M, Malyar NM, Fitzpatrick LA, Beighley PE, Zamir M, Ritman EL. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat Rec 2003;272A2.:526-537.
Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926a;9:835-841.
Murakami T. Application of the scanning electron microscope to the study of the fine distribution of blood vessels. Arch. Histol. Jap. 1971;32:445-454.
Hodde KC, Nowell JA. SEM of micro-corrosion casts. Scan Electron Microsc. 1980;89-106.
Ohtani O, Kikuta A, Ohtsuka A, Taguchi T, Murakami T. Microvasculature as studied by the microvascular corrosion casting/scanning electron microscope method. I. Endocrine and digestive system. Arch Histol Jpn. 1983;46:1-42.
Ohtani O. Review of scanning electron and light microscopic methods in microcirculation research and their application in pancreatic studies. Scan. Electron Microsc. 1984;653-661.
Minnich B, Leeb H, Bernroider EW, Lametschwandtner A. Three-dimensional morphometry in scanning electron microscopy: a technique for accurate dimensional and angular measurements of microstructures using stereo paired digitized images and digital image analysis. J. Microsc. 1999;195:23-33.
Minnich B, Lametschwandtner A. Lengths measurements in microvascular corrosion castings: two-dimensional versus three-dimensional morphometry. Scanning. 2000; 22:173-177.
Malkusch W, Konerding MA, Klapthor B, Bruch J. A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization. Analyt. Cell. Path. 1995;9:69-81.
Rashevsky N. The principle of adequate design. In: Rosen R. Foundations of Mathematical Biology. New York, NY: Academic Press; 1973;3:158-167.
Kamiya A, Togawa T. Optimal branching structure of the vascular tree. Bull. Math. Biophys. 1972;34:431-438.
Kamiya A, Togawa T, Yamamoto A. Theoretical relationship between the optimal models of the vascular tree. Bull. Math. Biol. 1974;36:311-323.
Zamir M. The role of shear forces in arterial branching. J. Gen. Physiol. 1976a;67:213-222.
Zamir M. Optimality principles in arterial branching. J. Theor. Biol. 1976b;62:227-251.
Aharinejad S, Lametschwandtner A. Microvascular Corrosion Casting in Scanning Electron Microscopy - Techniques and Applications. Springer Vienna. 1992; 375p.
Minnich B, Lametschwandtner A. Scanning Electron Microscopy and Vascular Corrosion Casting for Characterization of Microvascular Networks in Human and Animal Tissues, In: Méndes-Vilas A, Diaz Alvarez J, eds. Science, Technology, Applications and Education. FORMATEX, Microscopy; 2011:I:29-39.
Lametschwandtner A, Miodonski A, Simonsberger P. On the prevention of specimen charging in scanning electron microscopy of vascular corrosion casts by attaching conductive bridges. Mikroskopie 1980;369-10.:270-273.
Minnich B, Margiol S, Frysak J, Bernroider EWN. Morphometric SEM 3D analysis of microvascular networks and automated calculation of vessel angioarchitecture optimalities, In: FORMATEX, Current microscopy contributions to advances in science and technology, A. Méndes-Vilas and J. Diaz Alvarez Eds.. 2012: Vol. I, 191-199. ISBN 13.: 978-84-939843-5-9.
Murray CD. The physiological principle of minimum work.I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 1926b;12:207-214.
Zamir M, Bigelow DC. Cost of departure of arterial branching. J. Theor. Biol. 1984;109:401-409.
Zamir M. Nonsymmetrical bifurcations in arterial branching. J Gen Physiol. 1978;72:837-845.
Zamir M. The branching structure of arterial trees. Comments Theor. Biol. 1988;1:15-37.
Aharinejad SH., Böck P. Casting with Mercox-methylmethacrylic acid mixtures causes plastic sheets on elastic arteries. A scanning and transmission electron microscopic study. Scann Microsc. 1993;7:629-34; discussion 634-35.
Aharinejad SH., Böck P. Different forms of corrosion casts. Scann Microsc. 1994;8:403-14.
Bosman MC, De Wet PD,Le Roux CG. The ultrastructure of the `peripheral resistance`and the precapillary sphincters. S Afr Med J 1982;62:874-76.
Ho J, Ware M, Law J, Nagaraj A, Jain S, Rios J, Calderon R, Toombs B, Anderson A, Bray C, Curley S, Corr SJ. Improved, Shorter-Latency Carcinogen-Induced Hepatocellular Carcinoma Model in Pigs. Oncology. 2018;956.:360-369. doi: 10.1159/000491092. Epub 2018 Sep 28. PMID: 30269135.
Szuák A, Korom C, Németh K, Nemeskéri Á, Harsányi L. Can the transection plane be optimized in pancreatic resections? Physiol Int. 2023 Feb 8;1101.:46-51. doi: 10.1556/2060.2022.00122. PMID: 36753299.
De Spiegelaere W, Caboor L, Van Impe M, Boone MN, De Backer J, Segers P, Sips P. Corrosion casting of the cardiovascular structure in adult zebrafish for analysis by scanning electron microscopy and X-ray microtomography. Anat Histol Embryol. 2020 Sep;495.:635-642. doi: 10.1111/ahe.12535. Epub 2020 Jan 29. PMID: 31995240.
An P, Wang Y, Xing LM, Feng W. Fetal Complex Congenital Heart Disease Diagnosed Using Prenatal Ultrasound and Corrosion Casting for Large Vessels: A Report for Authentic Teaching by True Representation. Balkan Med J. 2019 Aug 22;365.:296-297. doi: 10.4274/balkanmedj.galenos.2019.2019.6.13. Epub 2019 Jul 9. PMID: 31286753; PMCID: PMC6711253.
Wang Y, Zhang J, Zeng H, Cao H, Si Z, Feng W, Xie M. Utility of modified vascular corrosion casting technique in the diagnosis of fetal ductus arteriosus abnormalities. Sci Rep. 2020 Aug 4;101.:13158. doi: 10.1038/s41598-020-69694-5. PMID: 32753575; PMCID: PMC7403371.
Zhang J, Feng W, He Q, Guo H, Zeng H, Si Z, Liu Y, Wang Y. Utility of a modified vascular corrosion casting technique in the diagnosis of fetal total anomalous pulmonary venous connection. Sci Rep. 2021 May 28;111.:11281. doi: 10.1038/s41598-021-90681-x. PMID: 34050234; PMCID: PMC8163765.
Werlein C, Ackermann M, Stark H, Shah HR, Tzankov A, Haslbauer JD, von Stillfried S, Bülow RD, El-Armouche A, Kuenzel S, Robertus JL, Reichardt M, Haverich A, Höfer A, Neubert L, Plucinski E, Braubach P, Verleden S, Salditt T, Marx N, Welte T, Bauersachs J, Kreipe HH, Mentzer SJ, Boor P, Black SM, Länger F, Kuehnel M, Jonigk D. Inflammation and vascular remodeling in COVID-19 hearts. Angiogenesis. 2023 May;262.:233-248. doi: 10.1007/s10456-022-09860-7. Epub 2022 Nov 12. PMID: 36371548; PMCID: PMC9660162.
Neubert L, Borchert P, Shin HO, Linz F, Wagner WL, Warnecke G, Laenger F, Haverich A, Stark H, Hoeper MM, Kuehnel M, Ackermann M, Jonigk D. Comprehensive three-dimensional morphology of neoangiogenesis in pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. J Pathol Clin Res. 2019 Apr;52.:108-114. doi: 10.1002/cjp2.125. Epub 2019 Feb 27. PMID: 30697960; PMCID: PMC6463863.
Audebert C, Peeters G, Segers P, Laleman W, Monbaliu D, Korf H, Trebicka J, Vignon-Clementel IE, Debbaut C. Closed-Loop Lumped Parameter Modeling of Hemodynamics During Cirrhogenesis in Rats. IEEE Trans Biomed Eng. 2018 Oct;6510.:2311-2322. doi: 10.1109/TBME.2018.2793948. Epub 2018 Jan 15. PMID: 29993530.
Peeters G, Debbaut C, Friebel A, Cornillie P, De Vos WH, Favere K, Vander Elst I, Vandecasteele T, Johann T, Van Hoorebeke L, Monbaliu D, Drasdo D, Hoehme S, Laleman W, Segers P. Quantitative analysis of hepatic macro- and microvascular alterations during cirrhogenesis in the rat. J Anat. 2018 Mar;2323.:485-496. doi: 10.1111/joa.12760. Epub 2017 Dec 4. PMID: 29205328; PMCID: PMC5807949.
Sandech N, Jangchart R, Komolkriengkrai M, Boonyoung P, Khimmaktong W. Efficiency of Gymnema sylvestre-derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats. Exp Ther Med. 2021 Dec;226.:1420. doi: 10.3892/etm.2021.10855. Epub 2021 Oct 11. PMID: 34707702; PMCID: PMC8543180.
Liang X, Zhang J, Wang Y, Wu Y, Liu H, Feng W, Si Z, Sun R, Hao Z, Guo H, Li X, Xu T, Wang M, Nan Z, Lv Y, Shang X. Comparative study of microvascular structural changes in the gestational diabetic placenta. Diab Vasc Dis Res. 2023 May-Jun;203.:14791641231173627. doi: 10.1177/14791641231173627. PMID: 37186815; PMCID: PMC10192807.
Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020 Jul 9;3832.:120-128. doi: 10.1056/NEJMoa2015432. Epub 2020 May 21. PMID: 32437596; PMCID: PMC7412750.
Ackermann M, Stark H, Neubert L, Schubert S, Borchert P, Linz F, Wagner WL, Stiller W, Wielpütz M, Hoefer A, Haverich A, Mentzer SJ, Shah HR, Welte T, Kuehnel M, Jonigk D. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J. 2020 Mar 12;553.:1900933. doi: 10.1183/13993003.00933-2019. PMID: 31806721.
Huling J, Min SI, Kim DS, Ko IK, Atala A, Yoo JJ. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomater. 2019 Sep 1;95:328-336. doi: 10.1016/j.actbio.2019.04.001. Epub 2019 Apr 3. PMID: 30953799.
Zambon JP, Ko IK, Abolbashari M, Huling J, Clouse C, Kim TH, Smith C, Atala A, Yoo JJ. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater. 2018 Jul 15;75:226-234. doi: 10.1016/j.actbio.2018.06.004. Epub 2018 Jun 5. PMID: 29883813.
Tangphokhanon W, Pradidarcheep W, Lametschwandtner A. α-mangostin preserves hepatic microvascular architecture in fibrotic rats as shown by scanning electron microscopy of vascular corrosion casts. Biomed Rep. 2021 Jun;146.:48. doi: 10.3892/br.2021.1424. Epub 2021 Mar 23. PMID: 33859819;
Refbacks
- There are currently no refbacks.
ISSN: 2346-8491 (online)