Efficacy of selenium nanoparticles 10% suspension on the kidney of diabetic rats.

Salome Khubulava, Nodar Khodeli, Ia Khakhutaishvili, Mikheil Jangavadze, Liza Chichua, Giorgi Phichkhaia


Diabetes mellitus (DM) is a prevalent non-communicable disease with profound impacts on health and productivity globally. With the majority of diabetic patients facing debilitating complications, urgent measures are warranted, particularly in low- and middle-income countries where the disease burden is high. In recent years, nanotechnology has emerged as a promising avenue in medicine, with selenium nanoparticles garnering attention for their potential therapeutic applications. Selenium, an essential micronutrient, exhibits significant antioxidant properties and plays a crucial role in various physiological processes. Notably, selenium deficiency exacerbates oxidative stress, a hallmark of diabetes, further compromising pancreatic function and exacerbating diabetic complications. This study investigates the therapeutic potential of selenium nanoparticles in alleviating diabetic complications, particularly nephropathy, in experimental rat models of type 1 diabetes.

The research conducted at the A. Natishvili Institute of Morphology, Tbilisi State University, utilized selenium nanoparticles synthesized through advanced nanomilling techniques. Experimental rats were induced with type 1 diabetes and subsequently treated with selenium nanoparticles, insulin, or a combination of both. Biochemical analyses revealed significant improvements in renal function parameters, including blood urea nitrogen, creatinine, and albumin levels, following treatment with selenium nanoparticles, both alone and in combination with insulin. Morphological examinations corroborated these findings, demonstrating reduced inflammatory infiltration and preservation of renal architecture in treated groups compared to untreated diabetic rats. Notably, combined therapy with selenium nanoparticles and insulin exhibited superior efficacy in mitigating renal edema and preserving renal function compared to monotherapy with either agent.

These results underscore the potential of selenium nanoparticles as a therapeutic adjunct in the management of diabetic complications, particularly nephropathy. Further research and clinical trials are warranted to elucidate the mechanisms underlying the protective effects of selenium nanoparticles and optimize their clinical utility in diabetic care.


Diabetes Mellitus, Selenium Nanoparticles, Kidney

Full Text:



WHO, “Leading causes of death and disability. The top 10 causes of death,” WHO reports, no. December, pp. 1–9, 2020, [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death#:~:text=In high-income countries%2C deaths,or 205 000 deaths) respectively.

International Diabetes Federation, “IDF Diabetes Atlas 2021,” 2021. [Online]. Available: https://diabetesatlas.org/atlas/tenth-edition/.

IDF, “Iternational Diabetes Federation DIABETES ATLAS Ninth edition 2019,” 2019. [Online]. Available: https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf.

M. P. Rayman, “The importance of selenium to human health,” Lancet, vol. 356, no. 9225, pp. 233–241, Jul. 2000, doi: 10.1016/S0140-6736(00)02490-9.

M. P. Rayman, “Selenium and human health,” Lancet, vol. 379, no. 9822, pp. 1256–1268, 2012, doi: 10.1016/S0140-6736(11)61452-9.

R. Kvanchakhadze, Selenium in our world.pdf. 2018.

T. C. Stadtman, “Selenium Biochemistry,” Annu. Rev. Biochem., vol. 59, no. 1, pp. 111–127, Jun. 1990, doi: 10.1146/annurev.bi.59.070190.000551.

S. A. P. Katrin Loeschner, Niels Hadrup, Marianne Hansen, H. R. L. Bente Gammelgaard, Laura Hyrup Møller, Alicja Mortensen, and and E. H. Larsen, “Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats.” Metallomics, 6(2), 330., p. 330, 2014, doi: 10.1039/c3mt00309d.

A. Wadhwani & Utkarsha U. Shedbalkar & Richa Singh & Balu A. Chopade, “Biogenic selenium nanoparticles current status and future prospects,” Appl. Microbiol. Biotechnol., no. 100(6), pp. 2555–2566, 2016, doi: 10.1007/s00253-016-7300-7.

Z. Huang, B. J. Guo, R. N. S. Wong, and Y. Jiang, “Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis,” Food Chem., vol. 100, no. 3, pp. 1137–1143, 2007, doi: 10.1016/j.foodchem.2005.11.023.

M. H. Yazdi, M. Mahdavi, B. Varastehmoradi, M. A. Faramarzi, and A. R. Shahverdi, “The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: An in vivo study,” Biol. Trace Elem. Res., vol. 149, no. 1, pp. 22–28, 2012, doi: 10.1007/s12011-012-9402-0.

I. Wang, Yanbo Yan, Xuxia L Fu, “Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio,” Int. J. Nanomedicine, no. 2013:8, pp. 4007–4013, 2013, doi: 10.2147/IJN.S43691.

K. Anu, S. Devanesan, R. Prasanth, M. S. AlSalhi, S. Ajithkumar, and G. Singaravelu, “Biogenesis of selenium nanoparticles and their anti-leukemia activity,” J. King Saud Univ. - Sci., vol. 32, no. 4, pp. 2520–2526, 2020, doi: 10.1016/j.jksus.2020.04.018.

W. Liu et al., “Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism,” ACS Nano, vol. 6, no. 8, pp. 6578–6591, 2012, doi: 10.1021/nn202452c.

L. D. Geoffrion et al., “Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments,” ACS Omega, 2020, doi: 10.1021/acsomega.9b03172.

S. Wadhwani et al., “Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells,” Int. J. Nanomedicine, vol. Volume 12, pp. 6841–6855, Sep. 2017, doi: 10.2147/IJN.S139212.

H. Forootanfar et al., “Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide,” J. Trace Elem. Med. Biol., vol. 28, no. 1, pp. 75–79, 2014, doi: 10.1016/j.jtemb.2013.07.005.

Q. Shen, B. Zhang, R. Xu, Y. Wang, X. Ding, and P. Li, “Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01,” Anaerobe, vol. 16, no. 4, pp. 380–386, 2010, doi: 10.1016/j.anaerobe.2010.06.006.

V. Jayaprakash and J. R. Marshall, “Selenium and other antioxidants for chemoprevention of gastrointestinal cancers,” Best Pract. Res. Clin. Gastroenterol., vol. 25, no. 4–5, pp. 507–518, 2011, doi: 10.1016/j.bpg.2011.09.006.

C. Kornhauser, J. R. Garcia-Ramirez, K. Wrobel, E.-L. Pérez-Luque, M.-E. Garay-Sevilla, and K. Wrobel, “Serum selenium and glutathione peroxidase concentrations in type 2 diabetes mellitus patients,” Prim. Care Diabetes, vol. 2, no. 2, pp. 81–85, Jun. 2008, doi: 10.1016/j.pcd.2008.02.003.

H. Steinbrenner, E. Bilgic, L. Alili, H. Sies, and P. Brenneisen, “Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity,” Free Radic. Res., vol. 40, no. 9, pp. 936–943, 2006, doi: 10.1080/10715760600806248.

P. Brenneisen, H. Steinbrenner, and H. Sies, “Selenium, oxidative stress, and health aspects,” Mol. Aspects Med., vol. 26, no. 4-5 SPEC. ISS., pp. 256–267, 2005, doi: 10.1016/j.mam.2005.07.004.

M. B. Tabar, “Determination of serum selenium in patients with type II diabetes mellitus,” Middle East J. Sci. Res., vol. 12, no. 4, pp. 433–435, 2012, doi: 10.5829/idosi.mejsr.2012.12.4.2058.

G. Vassort and B. Turan, “Protective role of antioxidants in diabetes-induced cardiac dysfunction,” Cardiovasc. Toxicol., vol. 10, no. 2, pp. 73–86, 2010, doi: 10.1007/s12012-010-9064-0.

B. A. Zachara et al., “The effect of selenium supplementation in the prevention of DNA damage in white blood cells of hemodialyzed patients: A pilot study,” Biol. Trace Elem. Res., vol. 142, no. 3, pp. 274–283, 2011, doi: 10.1007/s12011-010-8776-0.

R. J. Shamberger, Biochemistry of Selenium, vol. 98, no. 5_Part_1. Boston, MA: Springer US, 1983.

C. W. Lu, H. H. Chang, K. C. Yang, C. S. Kuo, L. T. Lee, and K. C. Huang, “High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance,” BMJ Open Diabetes Res. Care, vol. 4, no. 1, 2016, doi: 10.1136/bmjdrc-2016-000253.

S. Roy, S. K. Dontamalla, A. K. Mondru, S. Sannigrahi, and P. R. Veerareddy, “Downregulation of apoptosis and modulation of TGF-β1 by sodium selenate prevents streptozotocin-induced diabetic rat renal impairment,” Biol. Trace Elem. Res., vol. 139, no. 1, pp. 55–71, 2011, doi: 10.1007/s12011-010-8635-z.

I. Hassan, H. Ebaid, J. Al-Tamimi, M. A. Habila, I. M. Alhazza, and A. M. Rady, “Selenium nanoparticles mitigate diabetic nephropathy and pancreatopathy in rat offspring via inhibition of oxidative stress,” J. King Saud Univ. - Sci., vol. 33, no. 1, p. 101265, 2021, doi: 10.1016/j.jksus.2020.101265.

A. S. Reddi and J. S. Bollineni, “Selenium-deficient diet induces renal oxidative stress and injury via TGF-β1 in normal and diabetic rats,” Kidney Int., vol. 59, no. 4, pp. 1342–1353, 2001, doi: 10.1046/j.1523-1755.2001.0590041342.x.

B. A. Zachara, Selenium and selenium-dependent antioxidants in chronic kidney disease, 1st ed., vol. 68. Elsevier Inc., 2015.

I. Kiss, “Importance of selenium homeostasis in chronic and end-stage kidney diseases,” Orv. Hetil., vol. 154, no. 41, pp. 1641–1647, Oct. 2013, doi: 10.1556/OH.2013.29733.

P. Iglesias, R. Selgas, S. Romero, and J. J. Díez, “Selenium and kidney disease,” J. Nephrol., vol. 26, no. 2, pp. 266–272, 2013, doi: 10.5301/jn.5000213.

X. G. Lei and M. Z. Vatamaniuk, “Two tales of antioxidant enzymes on β cells and diabetes,” Antioxidants Redox Signal., vol. 14, no. 3, pp. 489–503, 2011, doi: 10.1089/ars.2010.3416.

J. Wang and H. Wang, “Oxidative Stress in Pancreatic Beta Cell Regeneration,” Oxid. Med. Cell. Longev., vol. 2017, pp. 1–9, 2017, doi: 10.1155/2017/1930261.

J. S. Harmon et al., “β-cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db Mice,” Endocrinology, vol. 150, no. 11, pp. 4855–4862, 2009, doi: 10.1210/en.2009-0708.

S. Lenzen, J. Drinkgern, and M. Tiedge, “Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues,” Free Radic. Biol. Med., vol. 20, no. 3, pp. 463–466, 1996, doi: 10.1016/0891-5849(96)02051-5.

L. A. Sigfrid et al., “Antioxidant enzyme activity and mRNA expression in the islets of Langerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line,” J. Mol. Med., vol. 82, no. 5, pp. 325–335, 2004, doi: 10.1007/s00109-004-0533-4.

J. D. Acharya and S. S. Ghaskadbi, “Islets and their antioxidant defense,” Islets, vol. 2, no. 4, pp. 225–235, Jul. 2010, doi: 10.4161/isl.2.4.12219.

G. M. Salome Khubulava, Nino Chichiveishvili, Nodar Khodeli, Giorgi Phichkhaia, “Preparation of Selenium Nanoparticles with Mechano-sonochemical Methods,” Asian J. Pharm., vol. 12, no. 02, 2018, doi: 10.22377/ajp.v12i02.2405.

B. L. Furman, “Streptozotocin‐Induced Diabetic Models in Mice and Rats,” Curr. Protoc. Pharmacol., vol. 70, no. 1, pp. 5.47.1-5.47.20, Sep. 2015, doi: 10.1002/0471141755.ph0547s70.

N. A. Mew, M. B. Pappa, and A. L. Gropman, Urea Cycle Disorders, Fifth Edit. Elsevier Inc., 2014.

F. Rossignol, N. Ah Mew, M. R. Meltzer, and A. L. Gropman, “Urea cycle disorders,” in Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, Elsevier, 2020, pp. 827–848.

E. G. G. Yvonna S. Lincoln, Naturalistic Inquiry. Sage, 1985.

G. Litwack, “Metabolism of Amino Acids,” in Human Biochemistry, Elsevier, 2018, pp. 359–394.

A. Kumari, “Urea Synthesis,” in Sweet Biochemistry, Elsevier, 2018, pp. 41–44.

G. S. Kumar, A. Kulkarni, A. Khurana, J. Kaur, and K. Tikoo, “Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy,” Chem. Biol. Interact., vol. 223, pp. 125–133, 2014, doi: 10.1016/j.cbi.2014.09.017.

H. Elbe, N. Vardi, M. Esrefoglu, B. Ates, S. Yologlu, and C. Taskapan, “Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats,” Hum. Exp. Toxicol., vol. 34, no. 1, pp. 100–113, 2015, doi: 10.1177/0960327114531995.

S. N. Mestry, J. B. Dhodi, S. B. Kumbhar, and A. R. Juvekar, “Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract,” J. Tradit. Complement. Med., vol. 7, no. 3, pp. 273–280, 2017, doi: 10.1016/j.jtcme.2016.06.008.

M. Rezaei-Kelishadi et al., “Effects of selenium nanoparticles on kidney and liver functional disorders in streptozotocin-induced diabetic rats,” Physiol. Pharmacol., vol. 21, no. 2, pp. 155–162, 2017.

S. Khater, I. Ali, S. Khater, A. Ahmed, and S. abd el-megid, “Preparation and Characterization of Chitosan-Stabilized Selenium Nanoparticles for Ameliorating Experimentally Induced Diabetic Nephropathy in Rats,” Arab J. Nucl. Sci. Appl., vol. 0, no. 0, pp. 1–9, Jun. 2020, doi: 10.21608/ajnsa.2020.19809.1300.

S. A. Abdulmalek and M. Balbaa, “Synergistic effect of nano-selenium and metformin on type 2 diabetic rat model: Diabetic complications alleviation through insulin sensitivity, oxidative mediators and inflammatory markers,” PLoS One, vol. 14, no. 8, p. e0220779, Aug. 2019, doi: 10.1371/journal.pone.0220779.

A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh, and C. Godugu, “Therapeutic applications of selenium nanoparticles,” Biomed. Pharmacother., vol. 111, no. December 2018, pp. 802–812, Mar. 2019, doi: 10.1016/j.biopha.2018.12.146.

L. Sun et al., “Impaired albumin function: a novel potential indicator for liver function damage?,” Ann. Med., vol. 51, no. 7–8, pp. 333–344, 2019, doi: 10.1080/07853890.2019.1693056.

J. P. Nicholson, M. R. Wolmarans, and G. R. Park, “REVIEW ARTICLE The role of albumin in critical illness,” Br. J. Anaesth., vol. 85, no. 4, pp. 599–610, 2000.

M. Taverna, A.-L. Marie, J.-P. Mira, and B. Guidet, “Specific antioxidant properties of human serum albumin,” Ann. Intensive Care, vol. 3, no. 1, p. 4, 2013, doi: 10.1186/2110-5820-3-4.

M. Roche, P. Rondeau, N. R. Singh, E. Tarnus, and E. Bourdon, “The antioxidant properties of serum albumin,” FEBS Lett., vol. 582, no. 13, pp. 1783–1787, Jun. 2008, doi: 10.1016/j.febslet.2008.04.057.

M. E. Holt, M. E. T. Ryall, and A. K. Campbell, “Albumin inhibits human polymorphonuclear leucocyte luminol-dependent chemiluminescence: Evidence for oxygen radical scavenging,” Br. J. Exp. Pathol., vol. 65, no. 2, pp. 231–241, 1984.

T. Ahn, C. S. Bae, and C. H. Yun, “Selenium supplementation restores the decreased albumin level of peripheral blood mononuclear cells in streptozotocin-induced diabetic mice,” J. Vet. Med. Sci., vol. 78, no. 4, pp. 669–674, 2016, doi: 10.1292/jvms.15-0611.

M. Sitar, S. Aydin, and U. ÇAkatay, “Human Serum Albumin and Its Relation with Oxidative Stress,” Clin. Lab., vol. 59, no. 09+10/2013, pp. 945–952, 2013, doi: 10.7754/Clin.Lab.2012.121115.

S. Prakash, “Role of Human Serum Albumin and Oxidative Stress in Diabetes,” J. Appl. Biotechnol. Bioeng., vol. 3, no. 1, pp. 281–285, May 2017, doi: 10.15406/jabb.2017.03.00057.

J. Himmelfarb and E. McMonagle, “Albumin is the major plasma protein target of oxidant stress in uremia,” Kidney Int., vol. 60, no. 1, pp. 358–363, 2001, doi: 10.1046/j.1523-1755.2001.00807.x.

T. M. Osicka et al., “Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C,” Diabetes, vol. 49, no. 1, pp. 87–93, 2000, doi: 10.2337/diabetes.49.1.87.

K. T. Park, C. H. Yun, C. S. Bae, and T. Ahn, “Decreased level of albumin in peripheral blood mononuclear cells of streptozotocin-induced diabetic rats,” J. Vet. Med. Sci., vol. 76, no. 8, pp. 1087–1092, 2014, doi: 10.1292/jvms.13-0631.

E. N. Sundaram, P. U. M. Reddy, and K. P. Singh, “Effect of alcoholic extracts of Indian medicinal plants on the altered enzymatic activities of diabetic rats,” Indian J. Pharm. Sci., vol. 71, no. 5, pp. 594–598, 2009, doi: 10.4103/0250-474X.58175.

T. O. Sunmonu and A. J. Afolayan, “Evaluation of Antidiabetic Activity and Associated Toxicity of Artemisia afra Aqueous Extract in Wistar Rats,” Evidence-Based Complement. Altern. Med., vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/929074.

J. L. Gross, M. J. de Azevedo, S. P. Silveiro, L. H. Canani, M. L. Caramori, and T. Zelmanovitz, “Diabetic Nephropathy: Diagnosis, Prevention, and Treatment,” Diabetes Care, vol. 28, no. 1, pp. 164–176, Jan. 2005, doi: 10.2337/diacare.28.1.164.

C. D. A. Stehouwer, M. Gall, J. W. R. Twisk, E. Knudsen, J. J. Emeis, and H.-H. Parving, “Increased Urinary Albumin Excretion, Endothelial Dysfunction, and Chronic Low-Grade Inflammation in Type 2 Diabetes: Progressive, Interrelated, and Independently Associated With Risk of Death,” Diabetes, vol. 51, no. 4, pp. 1157–1165, Apr. 2002, doi: 10.2337/diabetes.51.4.1157.

J. A. Jefferson, S. J. Shankland, and R. H. Pichler, “Proteinuria in diabetic kidney disease: A mechanistic viewpoint,” Kidney Int., vol. 74, no. 1, pp. 22–36, Jul. 2008, doi: 10.1038/ki.2008.128.

A. K. H. Lim and G. H. Tesch, “Inflammation in diabetic nephropathy,” Mediators Inflamm., vol. 2012, 2012, doi: 10.1155/2012/146154.

A. A. Eddy, “Proteinuria and interstitial injury,” Nephrol. Dial. Transplant., vol. 19, no. 2, pp. 277–281, Feb. 2004, doi: 10.1093/ndt/gfg533.

N. S. SHEERIN and S. H. SACKS, “Leaked protein and interstitial damage in the kidney: is complement the missing link?,” Clin. Exp. Immunol., vol. 130, no. 1, pp. 1–3, Oct. 2002, doi: 10.1046/j.1365-2249.2002.01979.x.

M. Zeisberg and R. Kalluri, “Physiology of the Renal Interstitium,” Clin. J. Am. Soc. Nephrol., vol. 10, no. 10, pp. 1831–1840, Oct. 2015, doi: 10.2215/CJN.00640114.

E. I. Christensen and J. Gburek, “Protein reabsorption in renal proximal tubule?function and dysfunction in kidney pathophysiology,” Pediatr. Nephrol., vol. 19, no. 7, pp. 714–721, Jul. 2004, doi: 10.1007/s00467-004-1494-0.


  • There are currently no refbacks.


Become a REVIEWER 


ISSN: 2346-8491 (online)