Alveolar Ridge Split And Augmentation Using Recombinant Human Bone Morphogenic Protein (rh-BMP-2) And Inorganic Xenograft
Abstract
The initial stage of restoration of missing teeth and, accordingly, their functional or aesthetic value, is dental implantation, which requires adequate volume (at least 10mm height and 6 mm – width) and quality of surrounding bone tissue. In case of its deficiency, different methods of bone augmentation are used, among which is the splitting of the alveolar ridge. Its indication is the presence of a narrow alveolar ridge (less than 6 mm, but not less than 3 mm). The bony ridge is divided into buccal and lingual plates with a piezoelectric instrument; An implant is placed between them together with a bone graft. The graft with its osteoconductive properties, represented by an inorganic components - hydroxyapatite and tricalcium phosphate, is enriched with recombinant human bone morphogenic protein (rhBMP-2), giving the graft an osteoinductive character, i.e. Stimulates osteogenesis and accelerates bone consolidation. It is obtained by modifying the transfected gene of the Escherichia Coli. Granular graft together with bone morphogenic protein ensures full-fledged bone formation by maintaining own buccal and lingual (palatal) bone plates, which is the best condition for dental implant integration. The article will consider 2 clinical cases of alveolar ridge splitting, its augmentation and simultaneous dental implant placement.
Keywords
Full Text:
PDFReferences
Esposito M., Coulthard P., Oliver R., Thomsen P., and Worthington H. V., Antibiotics to prevent complications following dental implant treatment, Cochrane Database of Systematic Reviews. (2003) 3, https://doi.org/10.1002/14651858.CD004152 2. H. Tatum Jr., “Maxillary and sinus implant reconstructions,” Dental Clinics of North America, vol. 30, no. 2, pp. 207–229, 1986. (Arora V. and Kumar D., Alveolar ridge split technique for implant placement, Medical Journal, Armed Forces India. (2015) 71, no. Suppl 2, S496–S498, https://doi.org/10.1016/j.mjafi.2013.12.013, 2-s2.0-84952630622, 26843770.) 3. Lekovic V., Kenney E., Weinlaender M., Han T., Klokkevold P., Nedic M., and Orsini M., A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases, Journal of Periodontology. (1997) 68, no. 6, 563–570, https://doi.org/10.1902/jop.1997.68.6.563, 2-s2.0-0031154703, 9203100. 4. Arora V. and Kumar D., Alveolar ridge split technique for implant placement, Medical Journal, Armed Forces India. (2015) 71, no. Suppl 2, S496–S498, 5. Lekovic V., Camargo P. M., Klokkevold P. R., Weinlaender M., Kenney E. B., Dimitrijevic B., and Nedic M., Preservation of alveolar bone in extraction sockets using bioabsorbable membranes, Journal of Periodontology. (1998) 69, no. 9, 1044–1049, https://doi.org/10.1902/jop.1998.69.9.1044, 2-s2.0-0032160402, 9776033. 6. Araújo M. G. and Lindhe J., Dimensional ridge alterations following tooth extraction. An experimental study in the dog, Journal of Clinical Periodontology. (2005) 32, no. 2, 212–218, https://doi.org/10.1111/j.1600-051X.2005.00642.x, 2-s2.0-14844286171, 15691354). 7. Pinho M. N., NovaesA. B.Jr., TabaM.Jr., Grisi M. F., de Souza S. L., and Palioto D. B., Titanium membranes in prevention of alveolar collapse after tooth extraction, Implant Dentistry. (2006) 15, no. 1, 53–61, 16569962. 8. Barone A., Aldini N. N., Fini M., Giardino R., Calvo Guirado J. L., and Covani U., Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study, Journal of Periodontology. (2008) 79, no. 8, 1370–1377, https://doi.org/10.1902/jop.2008.070628, 2-s2.0-49149126494, 18672985 9. Aimetti M., Romano F., Griga F. B., and Godio L., Clinical and histologic healing of human extraction sockets filled with calcium sulfate, International Journal of Oral & Maxillofacial Implants. (2009) 24, no. 5, 902_909, 19865631 10. Jahangiri L., Devlin H., Ting K., and Nishimura I., Current perspectives in residual ridge remodeling and its clinical implications: a review, The Journal of Prosthetic Dentistry. (1998) 80, no. 2, 224–237, https://doi.org/10.1016/S0022-3913(98)70116-7, 2-s2.0-0032137556, 9710828. 11. H. Tatum Jr., “Maxillary and sinus implant reconstructions,” Dental Clinics of North America, vol. 30, no. 2, pp. 207–229, 1986. 12. Scipioni A., Bruschi G., Giargia M., Berglundh T., and Lindhe J., Healing at implants with and without primary bone contact: an experimental study in dogs, Clinical Oral Implants Research. (1997) 8, no. 1, 39– 13. A. Scipioni, G. B. Bruschi, G. Calesini, E. Bruschi, and C. De Martino, “Bone regeneration in the edentulous ridge expansion technique: histologic and ultrastructural study of 20 clinical cases,” International Journal of Periodontics & Restorative Dentistry, vol. 19, no. 3, pp. 269–277, 1999 14. Summers R., Staged osteotomies in sinus areas: preparing for implant placement, Dental Implantology Update. (1996) 7, no. 12, 93–95. 47, https://doi.org/10.1111/j.1600-0501.1997.tb00006.x, 2-s2.0-0031061801 15. Summers RB. A new concept in maxillary implant surgery: The osteotome technique. Compendium. 1994;152:154–6. 158 passim; quiz 162. [PubMed] [Google Scholar] 16. Chiapasco M, Abati S, Romeo E, Vogel G. Clinical outcome of autogenous bone blocks or guided bone regeneration with e-PTFE membranes for the reconstruction of narrow edentulous ridges. Clin Oral Implants Res, 1999; 10:278-288. 17. Felice P, Pistilli R, Lizio G, Pellegrino G, Nisii A, Marchetti C. Inlay versus onlay iliac bone grafting in atrophic posterior mandible: a prospective controlled clinical trial for the comparison of two techniques. Clin Implant Dent Relat Res, 2009; 11:e69-82 18. Hodges NE, Perry M, Mohamed W, Hallmon WW, Rees T, Opperman LA. Distraction osteogenesis versus autogenous onlay grafting. Part II: biology of regenerate and onlay bone. Int J Oral Maxillofac Implants, 2006; 21:237-244. 19. Han J. Y., Shin S. I., Herr Y., Kwon Y. H., and Chung J. H., The effects of bone grafting material and a collagen membrane in the ridge splitting technique: an experimental study in dogs, Clinical Oral Implants Research. (2011) 22, no. 12, 1391–1398, 20. Enislidis G, Wittwer G, Ewers R. Preliminary report on a staged ridge splitting technique for implant placement in the mandible: a technical note. Int J Oral Maxillofac Implants, 2006; 21:445-449. 21. Demarosi F, Leghissa GC, Sardella A, Lodi G, Carrassi A. Localised maxillary ridge expansion with simultaneous implant placement: a case series. Br J Oral Maxillofac Surg, 2009; 47:535-540. 22. Sethi A, Kaus T. Maxillary ridge expansion with simultaneous implant placement: 5-year results of an ongoing clinical study. Int J Oral Maxillofac Implants, 2000; 15:491-499 23. Dene L, Condos S. Ridge expansion and immediate implant placement in the esthetic zone. N Y State Dent J, 2010; 76:28-31. 24. Chan HL, Fu JH, Koticha T, Benavides E, Wang HL. Ridge width gain with screw spreaders: a cadaver study. Implant Dent, 2013; 22:552-558 25. Scipioni A, Bruschi GB, Calesini G. The edentulous ridge expansion technique: A five-year study. Int J Periodontics Restorative Dent. 1994;14:451–9. [PubMed] [Google Scholar] [Ref list] 26. Simion M, Baldoni M, Zaffe D. Jawbone enlargement using immediate implant placement associated with a split-crest technique and guided tissue regeneration. Int J Periodontics Restorative Dent. 1992;12:462–73. [PubMed] [Google Scholar] [Ref list] 27. Enislidis G, Wittwer G, Ewers R. Preliminary report on a staged ridge splitting technique for implant placement in the mandible: A technical note. Int J Oral Maxillofac Implants. 2006;21:445–9. [PubMed] [Google Scholar] [Ref list] 28. Engelke WG, Diederichs CG, Jacobs HG, Deckwer I. Alveolar reconstruction with splitting osteotomy and microfixation of implants. Int J Oral Maxillofac Implants, 1997; 12:310-318 29. Enislidis G, Wittwer G, Ewers R. Preliminary report on a staged ridge splitting technique for implant placement in the mandible: a technical note. Int J Oral Maxillofac Implants, 2006; 21:445-449. 30. Piccinini M. Mandibular bone expansion technique in conjunction with root form implants: a case report. J Oral Maxillofac Surg, 2009; 67(9):1931-1936. 31. Sohn DS, Lee HJ, Heo JU, Moon JW, Park IS, Romanos GE. Immediate and delayed lateral ridge expansion technique in the atrophic posterior mandibular ridge. J Oral Maxillofac Surg, 2010; 68:2283-2290 32. Tatum H Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am, 1986; 30:207-229. 33. Sethi A, Kaus T. Maxillary ridge expansion with simultaneous implant placement: 5-year results of an ongoing clinical study. Int J Oral Maxillofac Implants, 2000; 15:491-499. 34. Suh JJ, Shelemay A, Choi SH, Chai JK. Alveolar ridge splitting: a new microsaw technique. Int J Periodontics Restorative Dent, 2005; 25:165-171. 35. Blus C, Szmukler-Moncler S, Vozza I, Rispoli L, Polastri C. Split-crest and immediate implant placement with ultrasonic bone surgery (piezosurgery): 3-year follow-up of 180 treated implant sites. Quintessence Int, 2010; 41:463-469 36. M.I. Alam, I. Asahina, K. Ohmamiuda, K. Takahashi, S. Yokota, S. Enomoto, Evaluation of ceramics composed of different hydroxyapatite to tricalcium phos phate ratios as carriers for rhBMP-2, Biomaterials 22 (2001) 1643–1651. 37. S. Ghanaati, M. Barbeck, R. Detsch, U. Deisinger, U. Hilbig, V. Rausch, et al., The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics, Biomed. Mater. 7 (2012) 015005. 38. Sung Eun Kim a , Young-Pil Yun a , Hae-Ryong Song a , Kyung-Hee Choi b , Bo Hae Kim c , Eun Kyeung Lee c , Jae-Jun Song c, Bone formation of middle ear cavity using biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 using animal model 39.Miyazawa, K., Shinozaki, M., Hara, T., Furuya, T., and Miyazono, K. (2002). Two Major Smad Pathways in TGF-β Superfamily Signalling. Genes To Cells 7 (12), 1191–1204. doi:10.1046/j.1365-2443.2002.00599.x 40. Poynton, A. R., and Lane, J. M. (2002). Safety Profile for the Clinical Use of Bone Morphogenetic Proteins in the Spine. Spine 27 (16), S40–S48. doi:10.1097/ 00007632-200208151-00010 41. Lavery, K., Swain, P., Falb, D., and Alaoui-Ismaili, M. H. (2008). BMP-2/4 and BMP-6/7 Differentially Utilize Cell Surface Receptors to Induce Osteoblastic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. J. Biol. Chem. 283 (30), 20948–20958. doi:10.1074/jbc.M800850200 42. Liu, F., Ventura, F., Doody, J., and Massagué, J. (1995). Human Type II Receptor for Bone Morphogenic Proteins (BMPs): Extension of the Two-Kinase Receptor Model to the BMPs. Mol. Cel Biol. 15 (7), 3479–3486. doi:10.1128/mcb.15.7. 3479და 43. Gomez-Puerto, M. C., Iyengar, P. V., García de Vinuesa, A., ten Dijke, P., and Sanchez-Duffhues, G. (2019). Bone Morphogenetic Protein Receptor Signal Transduction in Human Disease. J. Pathol. 247 (1), 9–20. doi:10.1002/path. 5170 44. Dent-Acosta, R. E., Storm, N., Steiner, R. S., and San Martin, J. (2012). The Tactics of Modern-Day Regulatory Trials. J. Bone Jt. Surg Am 94 (Suppl. 1), 39–44. doi:10.2106/JBJS.L.00194 45. Dolanmaz, D., Saglam, M., Inan, O., Dundar, N., Alniacık, G., Gursoy Trak, B., et al. (2015). Monitoring Bone Morphogenetic Protein-2 and -7, Soluble Receptor Activator of Nuclear Factor-Κb Ligand and Osteoprotegerin Levels in the Peri-Implant Sulcular Fluid during the Osseointegration of HydrophilicModified Sandblasted Acid-Etched and Sandblaste. J. Periodont Res. 50 (1), 62–73. doi:10.1111/jre.12182 46. Cecchi, S., Bennet, S. J., and Arora, M. (2016). Bone Morphogenetic Protein-7: Review of Signalling and Efficacy in Fracture Healing. J. Orthopaedic Translation 4, 28–34. doi:10.1016/j.jot.2015.08.001 47. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528–34. 48. Kim CS, Kim JI, Kim J, Choi SH, Chai JK, Kim CK, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501–7. 49. Zegzula HD, Buck DC, Brekke J, Wozney JM, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg Am 1997;79:1778–90. 50. Hong SJ, Kim CS, Han DK, Cho IH, Jung UW, Choi SH, et al. The effect of a fibrinfibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials 2006;27:3810–6. 51. Nevins M, Kirker-Head C, Nevins M, Wozney JA, Palmer R, Graham D. Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int J Periodontics Restorative Dent 1996;16:8–19. 52. Zheng LW, Wong MC, Rabie AB, Cheung LK. Evaluation of recombinant human bone morphogenetic protein-2 in mandibular distraction osteogenesis in rabbits: effect of dosage and number of doses on formation of bone. Br J Oral Maxillofac Surg 2006;44:487–94. 53. Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233–241. [CrossRef] [PubMed] 54. Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simoes, M.J.; Cerri, P.S. Biology of Bone Ti Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [CrossRef] [PubMed] 55. Ripamonti, U.; Reddi, A.H. Periodontal regeneration: Potential role of bone morphogenetic proteins. J. Periodont. Res. 1994, 29, 225–235. Int. J. Mol. Sci. 2015, 16 16050 56. Urist, M.R. Bone: Formation by autoinduction. Science 1965, 150, 893–899. 57. Jung, R.E.; Windisch, S.I.; Eggenschwiler, A.M.; Thoma, D.S.; Weber, F.E.; Hammerle, C.H. A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clin. Oral Implant. Res. 2009, 20, 660–666. 58. Hunt, D.R.; Jovanovic, S.A.; Wikesjo, U.M.; Wozney, J.M.; Bernard, G.W. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J. Periodontol. 2001, 72, 651–658. 59. Sigurdsson, T.J.; Nygaard, L.; Tatakis, D.N.; Fu, E.; Turek, T.J.; Jin, L.; Wozney, J.M.; Wikesjö, U.M. Periodontal repair in dogs: Evaluation of rhBMP-2 carriers. Int. J. Periodontics Restor. Dent. 1996, 16, 524–537. 60. Higuchi, T.; Kinoshita, A.; Takahashi, K.; Oda, S.; Ishikawa, I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J. Periodontol. 1999, 70, 1026–1031. 61. Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 2005;16:329–345. 62. Haidar ZS, Hamdy RC, Tabrizian M Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery. Biotechnol Lett 2009;31:1817– 1824. 63. Schliephake H, Weich HA, Dullin C, Gruber R, Frahse S. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid – an experimental study in rats. Biomaterials 2008;29:103–110 64. Kim CS, Kim JI, Kim J et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501– 2507. 65. Hong SJ, Kim CS, Han DK et al. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials 2006;27:3810–3816. 66. Schwarz F, Rothamel D, Herten M, Ferrari D, Sager M, Becker J. Lateral ridge augmentation using particulated or block bone substitutes biocoated with rhGDF-5 and rhBMP-2: an immunohistochemical study in dogs. Clin Oral Implants Res 2008;19:642–652 67. Le Nihouannen D, Guehennec LL, Rouillon T et al. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials 2006;27:2716–2722. 68. Le Nihouannen D, Saffarzadeh A, Gauthier O et al. Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. J Mater Sci Mater Med 2008;19:667–675 69. Jin-Woo Kim,a Kyung-Hee Choi,b Jeong-Ho Yun,a Jung Ui-Won,a Chang-Sung Kim,a Seong-Ho Choi,a and Kyoo-Sung Cho,a Seoul and Busan, South Korea YONSEI UNIVERSITY. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia
Refbacks
- There are currently no refbacks.
ISSN: 2346-8491 (online)